ZNF307 (Zinc Finger Protein 307) Acts as a Negative Regulator of Pressure Overload-Induced Cardiac Hypertrophy.
نویسندگان
چکیده
Pathological cardiac hypertrophy is a key risk factor for heart failure. We found that the protein expression levels of the ZNF307 (zinc finger protein 307) were significantly increased in heart samples from both human patients with dilated cardiomyopathy and mice subjected to aortic banding. Therefore, we aimed to elucidate the role of ZNF307 in the development of cardiac hypertrophy and to explore the signal transduction events that mediate the effect of ZNF307 on cardiac hypertrophy, using cardiac-specific ZNF307 transgenic (ZNF307-TG) mice and ZNF307 global knockout (ZNF307-KO) mice. The results showed that the deletion of ZNF307 potentiated aortic banding-induced pathological cardiac hypertrophy, fibrosis, and cardiac dysfunction; however, the aortic banding-induced cardiac hypertrophic phenotype was dramatically diminished by ZNF307 overexpression in mouse heart. Mechanistically, the antihypertrophic effects mediated by ZNF307 in response to pathological stimuli were associated with the direct inactivation of NF-κB (nuclear factor-κB) signaling and blockade of the nuclear translocation of NF-κB subunit p65. Furthermore, the overexpression of a degradation-resistant mutant of IκBα (IκBαS32A/S36A) reversed the exacerbation of cardiac hypertrophy, fibrosis, and dysfunction shown in aortic banding-treated ZNF307-KO mice. In conclusion, our findings demonstrate that ZNF307 ameliorates pressure overload-induced cardiac hypertrophy by inhibiting the activity of NF-κB-signaling pathway.
منابع مشابه
Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats
Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...
متن کاملThe transcription factor GATA-6 regulates pathological cardiac hypertrophy.
RATIONALE The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. OBJECTIVE To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. METHODS AND ...
متن کاملSmad Nuclear Interacting Protein 1 Acts as a Protective Regulator of Pressure Overload‐Induced Pathological Cardiac Hypertrophy
BACKGROUND Smad nuclear interacting protein 1 (SNIP1) plays a critical role in cell proliferation, transformation of embryonic fibroblasts, and immune regulation. However, the role of SNIP1 in cardiac hypertrophy remains unclear. METHODS AND RESULTS Here we examined the role of SNIP1 in pressure overload-induced cardiac hypertrophy and its mechanisms. Our results demonstrated that SNIP1 expre...
متن کامل1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level
Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...
متن کاملPromyelocytic Leukemia Zinc Finger Protein Activates GATA4 Transcription and Mediates Cardiac Hypertrophic Signaling from Angiotensin II Receptor 2
BACKGROUND Pressure overload and prolonged angiotensin II (Ang II) infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1)) null mouse, whereas Ang II receptor 2 (AT(2)) gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2) receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF) was shown to bind to the AT(2) receptor an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 69 4 شماره
صفحات -
تاریخ انتشار 2017